GCE

Mathematics

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 (i) First two terms are $1-\frac{1}{2} x \ldots \ldots .$.
B1

Third term $=\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2}\left[(-x)^{2}\right.$ or x^{2} or $\left.-x^{2}\right]$
$=-\frac{1}{8} x^{2}$
(ii) Attempt to replace x by $2 y-4 y^{2}$ or $2 y+4 y^{2}$

First two terms are $1-y$
Third term $=+\frac{3}{2} y^{2}$ or $\quad \sqrt{ }(4 b+2) y^{2}$

2 (i) $A(x-2)+B=7-2 x$
$A=-2$
$B=3$
(ii) $\int \frac{A}{x-2} \mathrm{~d} x=\left(A\right.$ or $\left.\frac{1}{A}\right) \ln (x-2)$
$\int \frac{B}{(x-2)^{2}} \mathrm{~d} x=-\left(B\right.$ or $\left.\frac{1}{B}\right) \cdot \frac{1}{x-2}$
Correct f.t. of A \& B; $A \ln (x-2)-\frac{B}{x-2}$
Using limits $=-2 \ln 3+2 \ln 2+\frac{1}{2} \quad$ ISW

3 (i) State/imply $\frac{\mathrm{d}}{\mathrm{d} x}(\sec x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{\cos x}\right)$ or $\frac{\mathrm{d}}{\mathrm{d} x}(\cos x)^{-1}$

Attempt quotient rule or chain rule to power -1

Obtain $\frac{\sin x}{\cos ^{2} x}$ or.$--(\sin x)(\cos x)^{-2}$
Simplify with suff evid to AG e.g. $\frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}$
(ii) Use $\cos 2 x=+/-1+/-2 \cos ^{2} x$ or $+/-1+/-2 \sin ^{2} x$

Correct denominator $=\sqrt{2 \cos ^{2} x}$
Evidence that $\frac{\tan x}{\cos x}=\sec x \tan x$ or $\int \frac{\tan x}{\cos x} \mathrm{~d} x=\sec x$ $\frac{1}{\sqrt{2}} \sec x \quad(+c)$

M1

A1 3

M1
B1
A1 $\sqrt{ } 3 \quad$ where $\mathrm{b}=\operatorname{cf}\left(x^{2}\right)$ in part (i) 6

M1
A1
A1 3

B1

B1 Negative sign is required

B1 $\sqrt{ } \quad$ Still accept lns as before

B1 $4 \quad$ No indication of \ln (negative)
7
B1 Not just $\sec x=\frac{1}{\cos x}$

M1

A1

A1 4

M1

A1

B1 irrespective of any const multiples

A1 4 Condone θ for x except final line

4 (i) Attempt to use $\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$ or $\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} t}{\mathrm{~d} x}$
$\frac{4}{2 t}$ or $\frac{2}{t}$
(ii) Subst $t=4$ into their (i), invert \& change sign

Subst $t=4$ into $(x, y) \&$ use num grad for tgt/normal $y=-2 x+52$ AEF CAO (no f.t.)
(iii) Attempt to eliminate t from the 2 given equations
$x=2+\frac{y^{2}}{16}$ or $y^{2}=16(x-2)$ AEF ISW

5 (i) Attempt to connect $\mathrm{d} x$ and $\mathrm{d} u$
$5-x=4-u^{2}$
Show $\int \frac{4-u^{2}}{2+u} .2 u \mathrm{~d} u$ reduced to $\int 4 u-2 u^{2} \mathrm{~d} u$ AG
Clear explanation of why limits change
$\frac{4}{3}$
(ii)(a) $5-x$
(b) Show reduction to $2-\sqrt{x-1}$
$\int \sqrt{x-1} \mathrm{~d} x=\frac{2}{3}(x-1)^{\frac{3}{2}}$
$\left(10-\frac{2}{3} .8\right)-\left(4-\frac{2}{3}\right)=\frac{4}{3}$ or $4 \frac{2}{3}-3 \frac{1}{3}=\frac{4}{3}$

6 (i) Work with correct pair of direction vectors
Demonstrate correct method for finding scalar product
Demonstrate correct method for finding modulus 24, 24.0 (24.006363..) (degrees) 0.419 (0.41899..) (rad)
(ii) Attempt to set up 3 equations

Find correct values of $(s, t)=(1,0)$ or $(1,4)$ or $(5,12)$
Substitute their (s, t) into equation not used
Correctly demonstrate failure
(iii) Subst their (s, t) from first 2 eqns into new $3^{\text {rd }}$ eqn $a=6$

M1 Not just quote formula

A1 2

M1
M1
A1 3 Only the eqn of normal accepted
M1

A1 2 Mark at earliest acceptable form.

7

M1 Including $\frac{\mathrm{d} u}{\mathrm{~d} x}=$ or $\mathrm{d} u=\ldots \mathrm{d} x$; not $\mathrm{d} x=\mathrm{d} u$
B1 perhaps in conjunction with next line
A1 In a fully satisfactory \& acceptable manner
B1 e.g. when $x=2, u=1$ and when $x=5, u=2$
B1 5 not dependent on any of first 4 marks
*B1 1 Accept $4-x-1=5-x$ (this is not AG) dep*B1

B1 Indep of other marks, seen anywhere in (b)

B1 3 Working must be shown

9

M1
M1 Of any two $3 x 3$ vectors rel to question
M1 Of any vector relevant to question
A1 4 Mark earliest value, allow trunc/rounding
M1 Of type $3+2 s=5,3 s=3+t,-2-4 s=2-2 t$
A1 Or 2 diff values of s (or of t)
M1 and make a relevant deduction
A1 4 dep on all 3 prev marks
M1 New $3^{\text {rd }}$ eqn of type $a-4 s=2-2 t$
A1 2
10

7 Attempt parts with $u=x^{2}+5 x+7, \mathrm{~d} v=\sin x$
$1^{\text {st }}$ stage $=-\left(x^{2}+5 x+7\right) \cos x+\int(2 x+5) \cos x d x$
$\int(2 x+5) \cos x \mathrm{~d} x=(2 x+5) \sin x-\int 2 \sin x \mathrm{~d} x$
$=(2 x+5) \sin x+2 \cos x$
$\mathrm{I}=-\left(x^{2}+5 x+7\right) \cos x+(2 x+5) \sin x+2 \cos x$
(Substitute $x=\pi$) -(Substitute $x=0$)
$\pi^{2}+5 \pi+10 \quad$ WWW AG
(i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d}}{\mathrm{d} x}(-5 x y)=(-)(5) x \frac{\mathrm{~d} y}{\mathrm{~d} x}+(-)(5) y$
LHS completely correct $4 x-5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}(=0)$
Substitute $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{8}$ or solve for $\frac{\mathrm{d} y}{\mathrm{~d} x} \&$ then equate to $\frac{3}{8}$
Produce $x=2 y$ WWW AG (Converse acceptable)
(ii) Substitute $2 y$ for x or $\frac{1}{2} x$ for y in curve equation

Produce either $x^{2}=36$ or $y^{2}=9$
AEF of $(\pm 6, \pm 3)$

M1 as far as $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$
A1 signs need not be amalgamated at this stage
B1 indep of previous A1 being awarded
B1
A1 WWW
M1 An attempt at subst $x=0$ must be seen

A1 7

7
B1

M1 i.e. reasonably clear use of product rule
A1 Accept " $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ " provided it is not used
M1 Accuracy not required for "solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ "
A1 5 Expect $17 x=34 y$ and/or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5 y-4 x}{2 y-5 x}$

M1

A1
A1 3 ISW Any correct format acceptable 8

9 (i) Attempt to sep variables in the form $\int \frac{p}{(x-8)^{1 / 3}} \mathrm{~d} x=\int q \mathrm{~d} t$ M1 Or invert as $\frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{r}{(x-8)^{1 / 3}} ; p, q, r$ consts
$\int \frac{1}{(x-8)^{1 / 3}} \mathrm{~d} x=k(x-8)^{2 / 3}$
All correct $\quad(+c)$
For equation containing ' c '; substitute $t=0, x=72$

Correct corresponding value of c from correct eqn
Subst their c \& $x=35$ back into eqn
$t=\frac{21}{8}$ or $2.63 / 2.625 \quad$ [C.A.O]
(ii) State/imply in some way that $x=8$ when flow stops

Substitute $x=8$ back into equation containing numeric ' c ' M1
$t=6$

A1 k const

A1

M1

A1
M1
A1 7
A2: $t=\frac{21}{8}$ or $2.63 / 2.625 \mathrm{WWW}$
M2 for $\int_{72}^{35}=\int_{0}^{t}$ or $\int_{35}^{72}=\int_{0}^{t}$

B1

A1 3
10

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

